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Enumeration of digraphs with a given 
automorphism group* 

Shinsaku Fujita 

Research Laboratories, Ashigara, Fuji Photo Film Co. Ltd., 
Minami-Ashigara, Kanagawa 250-01, Japan 

Four methods are described for enumerating digraphs with a given automorphism 
group: (1) a generating-function method based on subduced cycle indices, (2) a generating- 
function method based on partial cycle indices, (3) a method based on the elementary 
superposition theorem, and (4) a method based on the partial superposition theorem. All 
of these methods are based on the concept of unit subduced cycle indices and construct 
a set of versatile tools for combinatorial enumeration. They are applied to the enumeration 
of five-vertex digraphs with a given automorphism group. The table of marks and its 
inverse for the symmetric group of degree 5 are recalled. The table of USCIs of this 
group is obtained. 

1. Introduction 

The P61ya-Redfield theorem [1,2] and the Read-Redfield superposition 
theorem [2,3] have long been standard methods for enumerating graphs and other 
objects. Further extended formulations and accumulated results of enumerations 
have been described in Harary's textbook [4] and in several monographs [5,6]. 
Another methodology based on the concept of double coset has been applied to 
chemical enumeration [7, 8]. 

Calculating the number of graphs (or other objects) with a given automorphism 
group has been reported to require tables of marks [9-11], which were once described 
in Bumside's textbook [12]. An alternative method based on the tables of marks 
has been developed to solve this type of problem [13]. Different approaches by 
using double cosets and framework groups [14] and by combining double cosets 
and tables of marks [15] have been applied to chemical enumeration. 

We have reported promising methods based on the concept of unit subduced 
cycle indices (USCIs), which are calculated by subduction of coset representations 
[16, 17]. By starting from the USCIs, we have successively derived subduced cycle 
indices (SCIs) [16], partial cycle indices (PCIs) [18], and a cycle index (CI) [19], 
all of which are useful in obtaining various generating functions. The SCIs and the 
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PCIs have been applied to enumeration of objects with given symmetries [20]. The 
CI has been proved to be equivalent to P61ya's cycle index, although they are 
different in their explicit forms [19]. 

Alternatively, we have presented the elementary superposition theorem 
concerning the SCIs [21,17, 18], which provides a general method without relying 
on generating functions. On the basis of the elementary superposition theorem, we 
have derived the partial superposition theorem of the PCIs for calculating the 
number of objectes with a given symmetry as welll as the superposition of the CI 
for the total number of such objects [17]. The superposition of the CI has been 
proved to be equivalent to the Read-Redfield superposition theorem [18]. 

Although the USCI approach is applicable to various enumerations, previous 
examples have been mainly selected from chemical fields. In order to clarify the 
potentiality of the methods of the USCI approach, the present paper deals with 
enumeration of digraphs with a given automorphism group. In particular, (1) we 
precalculate a table of USCIs for the symmetric group of degree 5; thereby, (2) we 
enumerate five-vertex digraphs that are characterized by respective automorphism 
groups. In addition, we apply the elementary and partial superpositions to the same 
enumeration. 

2. Formulation 

Although the previous propositions of the USCI approach have mainly taken 
account of point groups [16], they are applicable to any groups of finite order 
without any modification. For enumerating digraphs, we will restate the propositions 
on the basis of symmetric groups and related ones in this paper. 

Let S [hI be the symmetric group acting on A = { 1, 2 . . . . .  n}. When we select 
one representative from every set of conjugated subgroups, we have a finite number 
of such representatives, which are denoted by s[nl(i = 1, 2 . . . . .  s). Thereby, we 
have s coset representations (CRs) represented by SM(/S!'q). 

Let A' be a set of I A'I objects. Suppose that the S [~] group acts on A' by 
acting on A to produce a permutation representation P on A', where n is equal to 
IAI. According to Burnside [12], the P representation can be reduced into a sum of 
the CRs, as represented by 

S 

P = ~ alSInl(/s!n]), (1) 
i=1 

where the symbol ai denotes the multiplicity of the CR. Each of the CRs, SM(/SIn]), 
corresponds to an orbit produced by the action of S M on A'. The multiplicities al are 
determined by using a table of marks, which is described in Bumside's textbook 
[12]. From eq. (1), we have the following equation concerning the lengths of orbits: 

~ ailSt"l[ 
i=~ iS!,ql--IA' l .  (2) 
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Let Z(S["](/S! nl) ,1, S~"]; sask) be a unit subduced cycle index (USCI) for the 
subduced S[n](/S! "1) ,1, SJ n] (definition 1 of ref. [16]). Each USCI is a monomial 
determined for i and j;  it can be precalculated by the data concerning the structure 
of S t']. On the basis of such USCIs (for i = 1, 2 . . . . .  s and j = 1, 2 . . . . .  s), we 
define a subduced cycle index (SCI) [16], a partial cycle index (PCI) [18], and a 
cycle index (CI) [19]. 

Here, we regard the set A' as a domain which corresponds to a set of edges 
(or vertices) to be examined. It should be noted that the set `5' is partitioned into 
several orbits in agreement with eq. (1). Let us consider a codomain: 

x = [ x l ,  x 2  . . . .  Xlxl}.  

Consider a function from ,5' to X, where Xt takes a weight W(Xl), which is selected 
to be an appropriate value according to a problem to be solved [16]. Suppose that 
Ot of Xt's (l = 1, 2 . . . . .  IXI) are selected from the codomain X, where 0:s  satisfy 
a partition represented by 

[0] : 01 + 02 + . . .  + 0,xi = lAG. (3) 

The function f :  `5' ---) X has a weight represented by 

W 0 = W ( X l )  O1 w ( X 2 )  02. . . w(XIx I )olxl. 

When all of  such functions are collected to give a set represented by F [°] 
= {fltOl, f~201 . . . . .  f]o]}, the symmetric group S [nl acts on F [°~ through the simultaneous 
action on `5 and A'. 

Let the symbol Aoi be the number of non-equivalent functions (e.g. digraphs, 
etc.) with Wo and S! hI. This enumeration is to count orbits contained in F [°1 during 
such an action. The Aoi value is evaluated by the following theorem. 

THEOREM 1 (Theorem 4 of ref. [16]). (The number of  non-equivalent functions) 

$ 
Aoi = ~,  Poj -mji (i = 1, 2 . . . . .  s), (4) 

j-1 

where m-~i is the j i-element in the inverse matrix of a mark table for S C'1. 

The number (Poi) of fixed functions having Wo and SJ ."] is evaluated by the 
following lemma. 

LEMMA 1 (Lemma 1 of ref. [16]). (Evaluation of  p o )  

A set of such numbers (poi's) for the S~ "] automorphism group is given as 
the coefficients of a generating function, 
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~-.PojWo = ZI(S? l; sa,, ) =  I~  l ~  Z(S[nI(]s! "l) $ S} hI; Sat, ) (5) 
[0] i=1 a = l  

(a  i ~ O) 

for j = 1.2 . . . . .  s. where the SCI of the right-hand side is replaced by a figure- 
inventory 

IXl 
sat . = ~ w(Xlla~ ' . (6) 

1=1 

By combining theorem 1 and lemma 1, we can easily obtain the following 
theorem, where we use the PCI defined above. 

THEOREM 2 (Theorem 16.3 of ref. [17]) 

A generating function for calculating Aoi is represented by 
$ 

AoiW o = PCI(S!"]; Sdi k ) = ~ ~j/ZI(S~n]; sai k ) (7) 
[Ol j= l  

for i = 1, 2 . . . . .  s, where sajk is replaced by the figure-inventory represented 
by eq. (6). 

This is a generating-function version of lemma 1 and theorem 1 [16,17]. 
Kerber and Th~rling [22] have alternatively derived a similar equation, though their 
formulation lacks the concepts of USCI, SCI and PCI. 

Finally, we obtain the following theorem. 

THEOREM 3 (Theorem 4 of ref. [191) 

Let Ao be the number of non-equivalent functions with the weight Wo. A 
generating function of Ao is represented by 

[Ol j=I i=I 

where Sa:k is replaced by the figure-inventory represented by eq. (6). 

3. The table of USCIs for the symmetric group of degree 5 

The USCI approach requires precalculated tables of USCIs and relevant ones. 
We have already reported tables of USCIs for various point groups; CE, C3 (isomorphic 
to the alternating group of degree 3: A[31), Cs, Ci, $4, Car, C3v (isomorphic to the 
symmetric group of degree 3: S[3]), C2h, C3h, D2, D3, D2h, D3h, D2d, T (isomorphic 
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to the al ternating group of  degree 4: A[41), Td ( isomorphic to the symmetr ic  group 
o f  degree 4: S[41), and Ih* Since isomorphic groups afford the same tables of  marks,  
the same inverses, and the same tables o f  USCIs,  such tables as reported for point 
groups [ 1 7] can also be employed to solve problems concerning permutat ion groups. 

Sheehan [10] has reported the table o f  marks for the symmetr ic  group of  
degree 5 (S[S]), from which its inverse matrix (table 1) is easi ly obtained. For  the 
purpose o f  enumerat ing  five-vertex digraphs, we have to precalculate the table o f  
USCI of  this group. Let  S [51 permute the set o f  integers { 1, 2, 3, 4, 5 }. Then we have 
distinct,  up to conjugacy,  subgroups o f  S [51 as follows: 

S[ 51 = C1 : the identity permutation group; order 1 

S~ 51 = C2 • {(1)(2)(3)(4)(5), (14)(23)(5)}; order 2 

S~ 51 = Cs " S [21 x S [11 x S [11 x S [11 = {(1)(2)(3)(4)(5), (1)(23)(4)(5)}; order 2 

St451 = C3 " A [31 x S ttl x S Ill = {(1)(2)(3)(4)(5), (132)(4)(5),(123)(4)(5)}; order 3 

S~ 51 = $4 " ((1243)(5)); order 4 

S~ 51 = C2, " ((14)(23)(5), (1)(23)(4)(5)); order 4 

Sf751 = D 2 • {(1)(2)(3)(4)(5), (13)(24)(5), (12)(34)(5), (14)(23)(5)}; order 4 

S~ 5] = C5 " ((15432)); order 5 

S~ 51 = C3, " S TM x S II1 x STY); order 6 

S[51 • A 3 x SI21; order 6 10 = C 3 h  

S[] 1 = D3 : {(1)(2)(3)(4)(5), (132)(4)(5), (123)(4)(5), 
(12)(3)(45), (1)(23)(45), (13)(2)(45) }; 

S[5] 12 --- D2d 

order 6 

{ (1)(2)(3)(4)(5), (13)(24)(5), (12)(34)(5), (14)(23)(5)(1423)(5), 
(1)(2)(34)(5), (12)(3)(4)(5), (1324)(5)}; order 8 

S[~ 1 = D 5 : a dihedral group of order 10; order 10 

S[~ 1 = T : A [41 x SIll; order 12 

S[ 5] = D3h : S TM x S[21; order 12 

S[51 = Dsm: ((1243)(5), (15432)); order 20 16 

S[Sl = Td " S [41 x sill; order 24 17 
S[51 = I • A[51; order 60 

18 

S[51 S[51; order 1 20 
19 -'~ 

'* For a brief collection, see appendices A to E of ref. [17]. We developed a computer program for 
calculating mark tables, their inverses, and tables of USCIs, which was installed in a VAX11-750 
computer (Digital Equipment). We have already obtained the tables for most point groups in addition 
to the ones listed here. These results will be published elsewhere. 
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,q51 and S tSl itself, are isomorphic to the point groups listed. These subgroups, except ~16 
The group ~tsl (=Dsm) is a metacyclic group of order 20 generated by (1243)(5) " 1 6  

and (15432).* For the sake of simplicity, we use point-group symbols (SchOnflies' 
symbols) to denote the subgroups of S Enl as shown in the above list; for example, 

= q[S] we employ ,-'lsOtSl I in place of ~,ls = I. Although this convention may lack mathe- 
matical strictness, it is useful for discussing graph enumeration as a continuation 
of compound enumeration described in previous papers [17]. 

For the subduction of each coset representation into each subgroup, we construct 
a subducedmark  table (SMT) [17, ch. 9] by selecting marks from the table of marks 
for the S t51 group. For example, let us calculate StsI(/S[ 5J) ,1, Dsm. Since the subgroup 
DSm contains C1, C2, $4, C5, D5, and Dsm as its subgroups, we collect the corresponding 
columns in the mark table of the S is] group to obtain an SMT, which is multiplied 
by the inverse (M315m) of a mark table for the Dsm group. 

M-I 
D5 m 

Thus, we have 

1/20 0 0 0 0 0 

- 1 / 4  1/2 0 0 0 0 

0 - 1 / 2  1 0 0 0 

- 1 / 2 0  0 0 1/4 0 0 

1/4 - 1 / 2  0 - 1 / 4  1/2 0 

0 1 / 2 - 1  0 - 1 / 2  1 

120 0 0 0 0 0 
60 4 0 0 0 0 
60 0 0 0 0 0 
40 0 0 0 0 0 
30 2 2 0 0 0 
30 2 0 0 0 0 
30 6 0 0 0 0 
24 0 0 4 0 0 
20 0 0 0 0 0 
20 0 0 0 0 0 
20 4 0 0 0 0 
15 3 1 0 0 0 
12 4 0 2 2 0 
10 2 0 0 0 0 
10 2 0 0 0 0 
6 2 2 1 1 1 
5 1 1 0 0 0 
2 2 0 2 2 0 
1 1 1 1 1 1 

x M -1 
D5 m = 

6 0 0 0 0 0 
2 2 0 0 0 0 
3 0 0 0 0 0 
2 0 0 0 0 0 
1 0 2 0 0 0 
1 1 0 0 0 0 
0 3 0 0 0 0 
1 0 0 1 0 0 
1 0 0 0 0 0 
1 0 0 0 0 0 
0 2 0 0 0 0 
0 1 1 0 0 0 
0 1 0 0 1 0 
0 1 0 0 0 0 
0 1 0 0 0 0 
0 0 1 0 0 0 
0 0 1 0 0 0 
0 0 0 0 1 0 
0 0 0 0 0 1 

(9) 

(IO) 

*The list of subgroups of S I5] is identical with the reported in ref. [10] except notation. The symbol 
Dsm is coined after its behavior, where the subscript (m) stems from "minus", because the group 
contains all the elements of D5 as well as the same number of elements of minus parity. 
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in which each row of  the last matrix indicates multiplicities of the corresponding 
CR of D5m. For example, the second row of the matrix corresponds to the subduction 
represented by 

S[51(1C2) .1, Dsm = 2Dsm(/Cl) + 2D5m(/C2). 01) 

In accord with this equation, the subduction is characterized by USCI SZoS~o, in 
which the subscripts come from the relationships IDsml/ICII=20/1 = 2 0  and 
IDsm[/[Cz[ = 20/2 = 10, and the powers stem from the coefficients of  the CRs. With 
the data of this matrix, we have the SD5m column of table 2. The other columns 
of  table 2 are calculated in the same line. 

4. Enumeration of digraphs 

Suppose A [2] is the set that contains all of the ordered pairs [p q], where p 
and q are selected from A so as to be different. The action of S in]on A is 
accompanied by the action of S In] on AE2], which creates a permutation representation. 
This formulation is essentially equivalent to Harary's formulation for digraph 
enumeration [4], except that the present one considers such a permutation representation 
in place of a reduced ordered pair group. 

Here, we regard the set At2J as a domain in place of A' described above. Let 
us consider a codomain X = {X1, X2}. Consider a function from At~l to X, which 
satisfies f([p q])=  XI if no edge is present between p and q, and f([p q] )=  X2 if 
there is an arrow directed from p to q. Enumeration of digraphs is formulated as 
enumeration of  such non-equivalent functions. Suppose that 01 of X1 and 02 of  X2 
are selected from the codomain X, where we have [0] : 0~ + 02 = IAtZ~l. The function 
f :  A [21 ---)X has a weight represented by Wo=w(X1)°lw(X2) °2. By means of  this 
formulation, we are able to apply the above propositions to this case. 

4.1. ASSIGNMENT OF ORBITS TO COSET REPRESENTATIONS 

For enumerating five-vertex digraphs, we first find orbits of a domain and 
assign them to coset representations. Let us consider  a set represented by 
A = { 1, 2, 3, 4, 5 }, which is permuted by a permutation of  S [5]. As described above, 
we construct AE2] on the basis of the A set, where the size of  At21 (iAt2]l) is equal 
to 20. The A t2] set is considered to be a set of directed edges, which is recognized 
as the present domain. We then count fixed points (marks) during the operations 
of  every subgroup. For example, the permutation (1)(23)(4)(5) of  Cs keeps six 
ordered pairs invariant, i.e. [1 4], [4 1], [1 5], [5 1], [4 5], and [5 4]; hence, the mark 
of P and Cs is calculated to be equal to 6 (#3 = 6). This operation is repeated for 
every subgroup (S~ 51 --19c[5L:. The resulting #j values ( j  = 1, 2, . . . ,  19) are collected 
to form a row vector, which is called a fixed point vector (FPV): 

FPV = (20, 0, 6, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0). 
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Hence, we have 

(20, 0, 6, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)M -1 

= (0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), 

where M -1 is the inverse matrix listed in table 1 [17, ch. 5]. The resulting vector 
indicates the appearance of the StS](/Cav) CR (= StSJ(/St951)). Note that IStS]l/IC3vI is 
equal to 20, because IStSJI = 120 and IC3vl = 6. The Car group (=S I31 x S tl] x S tl] in 
the present terminology) that appears in the parentheses in the notation of the CR 
can be proved to be the stabilizer of  a special one of the ordered pairs in A t21 [23]. 

In general, we have the following theorem. 

THEOREM 4 

Let A [2] be the set of all of the ordered pairs [p q] (p ~ q) that are selected 
from A = { 1, 2 . . . . .  n}. The set A [2] has only one orbit that is goverened by a coset 
representation represented by S[n](/I-I), where H = S ["-2] × S [1] × S [11. Obviously, 
the degree of the S[n](/I-I) CR is equal to IS["]I/[H[= n(n- 1). 

Proof 
Consider an ordered pair [p q] selected from A [2]. Let h be a permutation that 

keeps the pair invariant. Since the remaining elements of A [2] are permuted by each 
permutation of  S In-2], the h is represented by h'  × (p)(q), where h '  ~ S In-El. Conversely, 
if h is represented by h 'x  (p)(q),  where h ' ~  S E"-21, the h permutation keeps the 
[p q] pair invariant. Hence, H = S [~- 2] X S [1] X S [1] is the stabilizer of [p q]. Obviously, 
this is also the stabilzer of [q p]. 

Similarly, we have H ' =  S ' [n -2]  x S '[1] × S '[1] as the stabilizer of another 
ordered pair [p ' ,  q '] .  Obviously, H is different from H', and they can be proved to 
be conjugate to each other. This means that the set A [2] has one orbit governed 
by S[nl(/H). Equation (2) affords IS[~]l/IHl=n(n-1) because ISt~]l=n! and 
I n l = ( n - 2 ) !  [] 

Suppose that A {2] is the set that contains all of the unordered pairs {p q}, 
where p and q are selected from A = { 1, 2 . . . . .  n} so as to be different. The action 
of S [hI on A is accompanied by the action of S in] on A {2}, which creates a permutation 
representation. Let us consider the case of S [5] acting on A = { 1, 2, 3, 4, 5}. Obviously, 
we have [A{2}[ = 10 in this case. The corresponding FPV is calculated to be 

FPV = (10, 2, 4, 1 , 0 , 2 , 0 , 0 ,  1, 1, 1 , 0 , 0 , 0 ,  1 , 0 , 0 , 0 , 0 ) .  

The multiplication of the FPV by the inverse (table 1) afford a row vector 

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0), 

which indicates ~ a t  the A (21 has one orbit goverened by the CR S[5](/D3h). 
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In general, we have the following theorem. 

THEOREM 5 

Let A/21 be the set of all of the unordered pairs {p q} (p ~: q) that are selected 
from A = { 1, 2 . . . . .  n}. The set A ~21 has only one orbit that is goverened by a coset 
representation represented by S["1(/H), where H = S t~- 2j x S [2J. Obviously, the degree 
of the S["J(/H) CR is equal to ISt~ll/IHI = n(n-1)/2.  

Proof 
Consider an unordered pair {p q} selected from A I2}. Let h be a permutation 

that keeps the pair invariant. When we focus our attention on the subset {p q} of 
A t21, it is kept invariant by the action S [21 (= {(p)(q), (pq)}). Since the remaining 
elements of A {21 are permuted by each permutation of S ['~- 2], the h is represented 
by h ' x h " ,  where h' ~S  Cn-21 and h " ~ S  t2J. Conversely, if h is represented by 
h" xh",  where h'  ~S  t'-21 and h " ~ S  [2J, the h permutation keeps the {p q} pair. 
Hence, H = S t~-21 x S [21 is the stabilizer of {p q}. 

Similarly, we have H' = S 'In-2] x S '[21 as the stabilizer of another ordered 
pair {p', q'}. Obviously, H is different from H', and they can be proved to be 
conjugate to each other• This means that the set A {2} has one orbit governed by 
S[~J(/H). The degree of the CR is calculated to be that eq. (2) affords ISt~ll/IHI 
= n(n -  1)/2, when IS[nl[ = n! and IHI = ( n - 2 ) !  x 2 are introduced into eq. (2). [] 

This result can be used for the enumeration of graphs, which has been discussed 
by Sheehan [10]. The enumeration of graphs with a given automorphism group can 
be solved along the same lines as that of digraphs in the light of the present USCI 
approach.* Hence, we focus our attention on the enumeration of digraphs with a 
given automorphism group. 

4.2. ENUMERATION BASED ON SCIS 

The first method for enumerating five-vertex digraphs with an automorphism 
group is based on a generating function. Since the A [21 domain is governed by the 
St51(/C3v) CR, we select the USCIs in the StSl(/C3v) row of table 2. In the present 
case, the USCIs are equal to SCIs for enumerating pj values. 

Cl" s ~ = ( l + x )  z°, (12) 

• lo = (1 + x 2 )  1°, ( 1 3 )  C2 s2 

Cs . 6 7 S1 $2 = (1 + X)6(1 + X2) 7, (14) 

*The enumeration of four-vertex graphs with a given automorphism group is equivalent to that of 
adamantane isomers (or homologs) with a given symmetry. See ref. [24]. 
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C 3 • s?s 6 = (1 + x)2(1 + x3) 6, (15) 

$4 " s45 = (1 + x4) 5, (16) 

6 2  C2v " $2s 4 = (1 + x2)6(1 + x4)  2, (17) 

D 2 " S 5 = (1 h- X4) 5, (18) 

C5 " s~ = (1 -I- x5) 4, (19) 

C3v " s?s~s 6 = (1 + x)2(1 + x3)4(1 + x6), (20) 

C3h " S2S2S~ = ( l + x  2 ) ( l + x 3 ) 2 ( l + x 6 )  2, (21) 

D 3 " $2 $3 = (1 + x 2) (1 + x6) 3, (22) 

D2d " $3S8 = (1 + X4)3(1 + X8), (23) 

D5 " S2o = (1 + xl°) 2, (24) 

T " s2s12 = (1 + x4)2(1 + x12), (25) 

D3h " $2 $3 = (1 + X 2) (1 + X6) 3, (26) 

Dsm : $20 = 1 + X 2°, (27) 

Td " S2S12 = (1 + X4)2(1 + X12), (28) 

I : S 2 0 = I + x  2°, (29)  

S ESI : S 2 o = l + x  z°. (30) 

The weights of X1 and X 2 are expressed by W(Xl )=  1 for the absence of an 
edge and w(X2)=x for the presence of a directed edge. Hence, the figure- 
inventory (eq. (6)) is equal to sa= 1 + x  a, which is introduced into each of 
the SCIs in the light of lemma 1. Expansion of the resulting generating 
function affords each of Poj values as the coefficient of the x °2 term (or 
more precisely of the l° lx  °2 term) as shown in table 3, where [0] is expressed by 
01 + 0z = 20. 

According to theorem 1, the data of table 3 are regarded as a matrix, which 
is multiplied by the inverse M -1 (table 1). The result is shown in table 4. 

When we substitute 1 for x in eqs. (12)-(30) and collect the resulting values 
as a row vector, we obtain an FPV for calculating the total number of digraphs with 
a given automorphism group: 

FPV = (22°, 21°, 213, 28, 25, 28, 25, 24, 27, 25, 24, 24, 22, 23, 24, 2, 23, 2, 2). 
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Table 3 

Coefficients(PO/). 

Term C 1 C 2 C, C 3 Sn C2v D2 C5 C3v C3h D3 Dza D5 T D3h Dsm T d I S tSl 

x ° , x  ~ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
xl ,  x 19 20 0 6 2 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 

x2, x TM 190 10 22 1 0 6 0 0 1 1 1 0 0 0 1 0 0 0 0 
X3, X 17 1140 0 62 6 0 0 0 0 4 2 0 0 0 0 0 0 0 0 0 

x4, x 16 4845 45 141 12 5 17 5 0 8 0 0 3 0 2 0 0 2 0 0 
xS, x 15 15504 0 272 6 0 0 0 4 4 2 0 0 0 0 0 0 0 0 0 

x6, x TM 38760 120 456 15 0 32 0 0 7 3 3 0 0 0 3 0 0 0 0 
X7, X 13 77520 0 672 30 0 0 0 0 14 0 0 0 0 0 0 0 0 0 0 

xS, x 12 125970 210 882 15 10 46 10 0 7 3 3 4 0 1 3 0 1 0 0 

xg, x n 167960 0 1036 20 0 0 0 0 8 4 0 0 0 0 0 0 0 0 0 

x 1° 184756 252 1092 40 0 52 0 6 16 0 0 0 2 0 0 0 0 0 0 

Table 4 

The numbers of five-vertex digraphs with a given automorphism group. 

Term C1 C2 C, C 3 S 4 C2v D 2 C 5 C3v C3h D 3 D~ D5 T D3h Dsm Ta I S [51 Total 

x ° , x  ~ 0 0 
xl ,  x 19 0 0 

x2, x TM 0 1 

x3, x 17 5 0 

x4, x 16 28 6 

xS, x 15 107 0 

x6, x 14 278 22 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

1 0 0 2 0 0 0 0 0 0 0 0 1 0 0 0 0 

8 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 
13 1 1 7 0 0 2 0 0 1 0 0 0 0 2 0 0 
43 0 0 0 0 1 2 1 0 0 0 0 0 0 0 0 0 

59 2 0 13 0 0 2 0 0 0 0 0 3 0 0 0 0 
xT, x 13 591 0 105 4 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 

xS, x 12 962 38 124 2 3 18 0 0 1 0 0 3 0 0 3 0 1 0 0 

x9, x n 1314 0 168 2 0 0 0 0 4 2 0 0 0 0 0 0 0 0 0 

x 1° 1431 49 148 6 0 26 0 1 8 0 0 0 1 0 0 0 0 0 0 

total 8001 183 1190 28 8 106 0 3 50 8 0 8 1 0 14 0 6 0 2 

1 

1 

5 

16 

61 

154 

379 

707 

1155 

1490 

1670 

9608 

Note that the power of each element represents the number of suborbits that are 
generated by the corresponding subduction. In the light of corollary 3.2 of ref. [16], 
the FPV is multiplied by the inverse M -1 (table 1) to afford 

(8001, 183, 1190, 28, 8, 106, 0, 3, 50, 8, 0, 8, 1, 0, 14, 0, 6, 0, 2). 

These values are identical to the sums of the corresponding columns, as listed at 
the bottom of table 4. The total number is obtained to be 9608, which is vertified 
by the value shown in appendix II of ref. [4]. 
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] 

2 

'4. ,,- ) 

x 4 D2d x8 D2 d 

t J 

x4 Td x 8 T d 

Fig. 1. Five-vertex digraphs with Dzd and T o 
automorphism groups (x °~, 0 2 < 10). 

For exemplifying the results of table 4, fig. 1 depicts lower digraphs (x°L 02 < 10) 
with D2d and Td automorphism groups. These digraphs are drawn on the basis of 
a hypothetical methane skeleton (Td point group) and its D2d distorted form, in 
which four bonds and six edges are taken into consideration. Since this paper 
emphasizes correspondence between permutation groups and point groups, the 
automorphism groups of digraphs can be deduced by the inspection of such hypothetical 
skeletons. 

It is worth mentioning why no digraphs emerge for several automorphism 
groups; inherent lack and accidental lack. Problems of this type have been discussed 
by H~isselbarth [13] and by Brocas [14]. Here, we treat such problems through an 
altemative approach in which the inherent lack is explained by comparing the SCI 
of an automorphism group at issue with the SCI of each of its subgroups. The lack 
of digraphs of I, Dsm, T, and D 3 is inherent. The SCI (s20) of the I group is the same 
as that of the supergroup S[51; hence, attempted constitution of a digraph of the I 
automorphism group results in the inevitable appearance of an S [SJ digraph. The 
same situation is true for Dsm and S [5] (s20), for T and Td (s2sl2), and for D3 and 
D3h (s2s36). 

On the other hand, the absence of digraphs of the D E automorphism group is 
accidental, because the SCI of DE (s~) is different from any SCIs of its supergroups, 
i.e. sis8 of D2d and s~s12 of T (or Td). 

For illustrating such accidental lack, let us consider further coloring of a 
digraph 4 depicted in fig. 1. If we color the set of directed edges ([1 4], [4 1], [2 3] 
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and [3 2]) red and the other set of directed edges ([1 3], [3 1], [2 4] and [4 2] green, 
we have a colored digraph of the D 2 automorphism group. This desymmetrication 
process reflects the difference between the SCI of the D2a (s]ss) and that of the D 2 
(s54). On the other hand, in the case of the inherent lack, there appears no digraph 
even if we consider such coloring. For example, the Td digraphs (5, 6 and 7) 
of fig. 1 by no means produce colored T digraphs. 

Systematic examination of inherent lack and of accidental lack can be 
accomplished by desymmetrization lattices, which have been described for doing 
the same task concerning point groups [17]. 

Table 5 lists the numbers of four-vertex digraphs with a given automorphism 
group, which are calculated along the same line as above. Each of the subgroups 
belonging to S [4] is isomorphic to that of S [5] through the point-group symbol. The 
table of marks, its inverse and the table of USCIs for the T d point group [17] are 
employed for the present S t4l case. 

Table 5 

The numbers of  four-vertex digraphs with a given automorphism group." 

Term C 1 C 2 C. C 3 S 4 D 2 C2v C3v D2a T S [4] Total 

x °, x 12 0 0 0 0 0 0 0 0 0 0 '1 1 

x 1, x 11 0 0 1 0 0 0 0 0 0 0 0 1 

x 2, x l° 1 1 2 0 0 0 1 0 0 0 0 5 

x 3, x 9 7 0 3 1 0 0 0 2 0 0 0 13 

x 4, x 8 16 2 6 0 1 0 1 0 1 0 0 27 

x 5, x 7 28 0 10 0 0 0 0 0 0 0 0 38 

x 6 32 4 6 2 0 0 2 2 0 0 0 48 

total 136 10 50 4 2 0 6 6 2 0 2 218 

aThe S [41 group is isomorphic to the T d point group. 

All of the digraphs enumerated here have been depicted in appendix II of 
ref. [4], although they are not itemized with respect to automorphism groups. The 
assignment of an automorphism group to each of the digraphs can conveniently be 
accomplished by means of such a point-group symbol as listed in table 5. Since the 
S [4] group is isomorphic to the T d point group, we employ a tetrahedron (Td)  as  a 
parent, the six edges of which are substituted with arrows. This assignment will 
show the validity of table 5. 

4.3. ENUMERATION BASED ON PCIS 

An alternative method for calculating the number of digraphs with a given 
automorphism group is based on PCIs described in theorem 2. By using the inverse 
(table 1) and the USCIs (the S[5](/C3v) row of table 2), we have PCIs for enumerating 
digraphs: 



188 S. Fuj i ta ,  E n u m e r a t i o n  o f  d igraphs  

PCI(C1; sajk) 

PCI(C2; sajk) = 

PCI(Cs; Sdik) = 

PCI(C3; Sdjk) = 

PCI(S4; sajk) = 

PCI(C2v; Sajk) = 

PCI(Dz; Sajk) = 

PCI(Cs; sajk) = 

PCI(C3v; Sdjk) = 

PCI(C3h; sajk) = 

PCI(D3; Sdjk)  = 

PCI(D2d; sajk) = 

PCI(D5; Sdj.k) = 

PCI(T; sajk) = 

PCI(D3h; saik) = 

PCI(DSm; Sdjk) = 

PCI(Td; sa~k) = 

PCI(I; Sdjk) = 

PCI(St51; sa~k) = 

1 2o 15s~O 67 2 6  6 2 1 0 s 4 5 6 s  430sZls4s6 - 1 0 s  1 s 2 _ _ 1 0 s  a s 3  + - + 3 0 S 2 S  4 + ~-~ (s~ 

2 2 3 0 S z S 3 + 3 0 S ~ o + 2 0 s 2 4 s ~ 2 6 0 s z s ~  60s4Zs~2), (31) + 1 0 S 2 S 3 S  6 + - -  _ 

1 r~,o _ s54 6 z 2 s i s  8 - 2S12o + 2 s z s  ~ + 2S2o), (32) ,~2 - szs4 - s54 - 2szs~  + 

1 / 'e6e 7 6 2 -g ~o~ o 2 - 3s2s  4 - 3s2~s4s6 2 2 + 6s2s3 + 6s42s12 _ 6s2o), (33) - -  $2S  3 S 6 

1 / ' e2 t ,  6 2 4 2 Z -- SzS36 -- 2S24SlE + 2SES ~ + 2SZ4SlE), (34) ~ " 1  °3 - -  S1 $3S6  - -  $2S3S6  

l 5 s34s8 2Szo+2Szo) ' (s4 - - (35) 

I r~%2 3 _ 2szs36 + 2Szo), (36) \ ° 2 " 4  - -  $4 

5 3+8-s 4s,2 + 3s 4s,2), -~(s4 - (37) 

1 4 S o), (38) (ss - 

1 2 4  
-~ (sa s3 s6 - s2s~ - 2s24s12 + 2S2o), (39) 

1 2 2  s2s~) ,  (40) (s2s3 s6 - 

1 3 
~" ($2S 6 - -  $2S36), ( 4 1 )  

s34s8 2 (42) --  $4S12 , 

, 2 
-£ (Slo - Szo), (43) 

1 2 
2 (s4 s12 - sZ4s12), (44) 

s2s~ - S2o, (45) 

(46) 

(47) 

(48) 

(49) 

, 

2 
$4S12 - -  $20 , 

O, 

$20. 
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Introduction of  the figure-inventory Sd = 1 + X a into each of  these PCIs and expansion 
of  the resulting equation afford a generating function in which the coefficient of  the 
x °2 term indicates the number of  digraphs with 02 directed edges and the respective 
automorphism group. For example, the counting of  digraphs with a Td group is 
accomplished as follows: 

~ ,  AoTdWo = PCI(Td; 1 + x d) 
IO] 

= (1 + X4)2(1 + X 12)  - -  (1 + x 2°) 

= 2 X  4 + X 8 + X 12 + 2 X  16. (50) 

The results are identical with the values listed in the Td column of  table 4. They 
are depicted in fig. 1. 

4A. ENUMERATION BASED ON CIS 

The total number (Ao) concerning each of the weights Wo is calculated by 
means of theorem 3. The cycle index (eq. (8)) for this case is obtained to be 

Ci(StSJ;Sa~,) = I zo 1 e 10..t. 1 e6t, 7 1 .2  6 2 2 1--~ s l  + 8 "  °2 - - ' ~ "  °l °2 + ' 6 ' ~ 1 ~ 3  + I S  5 1 4 (51) S 3 S 6 , 

where each variable is adopted from the S[51(/C3v) row of table 3, and the coefficient 
of  the variable (Y.i~l rn---ji value of  each S~ 5]) is found in the rightmost column of  
table 2 or at the bottom of  table 3. The coefficient is positive if SJ 5] is a cyclic 
group; otherwise, it is equal to zero [19]. According to eq. (8), we have 

AoW o = CI(St51; 1 + x a) 
[ol 

- 110 ( l + x )  2° + l (1  +x2) '°  + 1 ( 1 +  x)6(l+x2)7 

+ ~ ( l + x ) 2 ( 1 + x 3 )  6 + ¼(1+x4) 5 + ½( l+xS)  4 

+ ~- (1 + x z) (1 + x3)2(1 + x6) 2 (52) 

= x 2° + x 19 + 5x 18 + 16x 17 + 61x 16 + 154x 15 + 379x 14 + 707x 13 

+ 1155x 12 + 1490x H + 1670x ~° + 1490x 9 + 1155x 8 + 707x 7 

+ 379x 6 +154x 5 +61x 4 +16x 3 + 5 x  2 + x + l .  (53) 

The coefficients of  the resulting series (eq. (53)) are equal to the total values 
obtained by summing up the respective rows, as listed in the rightmost column of  
table 4. 
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By substituting 1 for x, eq. (52) (or eq. (53)) affords 

220 21° 2627 2226 25 24 2 × 2222 
+ + + ...... + - -  + - -  + - 9608, 

120 8 12 6 4 5 6 

which is again equal to the un-itemized value reported in ref. [4]. 

S. Enumera t ion  based on e lementary  superposit ion 

In the preceding section, evaluation of  the Poi values has been accomplished 
by using generating functions ( lemma 1). We use here an alternative method,  which 
is based on the concept of e l e m e n t a r y  s u p e r p o s i t i o n  [17, 18]. 

In agreement with a partition [0] (eq. (3)), we consider the symmetric  group 
$[or] whose degree is equal to Or (r = 1, 2 . . . . .  IXl). According to P61ya [1], the 
cycle index for this group is given to be 

CI($tOA;s)= y~ n(v(°---')) s~'(°,)s~2(°,), s v°'(°') (54) 
(v(o,)) Or! . .  o, , 

where the cycle structure ( v (Or)  is represented by 

( v ( O r ) ) "  lvl (Or) + 2v2(Or) + .  • • + Orvo, (Or) = Or, (55) 

and where the coefficient of  each term is represented by 

n(v(o,)__.___Z~ = 1 (56) 
Off lVl(° ' )v l (Or)!  2v2(° ' )v2(Or)!  . . OV°'(°r)v • r O,  ( O r ) !  

The direct product of  the symmetric  groups, i.e. 

H = $to,] x $[o~1 x . . .  x $tO~x0, (57) 

affords a cycle index, which is the product of  the cycle indices of  the factors. 
Hence, eq. (54) affords 

[XI 

CI(H; s) = 1~ CI($[°" ]; s) (58) 
r=l 

~ r l ,  1 o z . . . S q  , (59) 
(7) 

where q = IA'I and (77) runs over partitions represented by 

(rl) " lrla + 202  + • • • + qOq = q. (60) 

Note that the partition (7/) is associated with [0] via eqs. (58) and (59)• 
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Since the subduced cycle indices (eq. (5)) are monomials ,  we can write them 
as follows: 

ZI(S)"I;sa~, ) -- s~,s2~...sUq,, (61) 

where a set of  #1, ,u2 . . . . .  and #q is determined to be a particular parition that 
depends upon eq. (5). Let an(u) denote the coefficient of  the monomial  of  eq. (59) 
in which (r/) is identical to (#). Then, we arrive at the concept of  elementary 
superposition ~. 

THEOREM 6 (Theorem 18.2 of ref. [17]). (Elemenary superposition) 

The Poj value is calculated by 

Pej = an(u)(lm/11! 2u~/~! • • "qlaqlAq !) (62) 

= CI(H; s) * ZI(S~nl; sa~ * ) 

for j =  1 ,2  . . . . .  s. 

(63) 

The cycle structure (r/(#)) is associated with the partition [0] via eqs. (58) 
and (59). The introduction of  the Psi values evaluated by theorem 6 into theorem 1 
provides us with another tool of enumeration. 

Equation (62) is converted into eq. (63) by employing the operation (* )  
introduced by Read [3]. It should be noted that the resulting equation is a monomial ,  
whereas the original definition of  the * operation is concemed with polynomials.  
This fact indicates that the concept of elementary superposit ion is an alternative 
foundation of  the Read-Redf i e ld  superposition theorem other than the previous one 
from which the theorem has been derived [3]. In other words, the Read -Redf i e ld  
superposit ion theorem can alternatively be proved by starting from the present 
concept of  elementary superposition [17,18]. 

For illustrating the elementary superposition theorem (theorem 6), we re- 
examine the above enumeration of  digraphs. For the sake of  simplicity, let us 
consider a special case in which the partition (eq. (3)) is represented by 01 = 2 and 
02 = 18. This means that we take account of  H = $[2] x $[18] and its cycle index 
CI($[2]; s) × CI($[18]; s). 

For the SCI ( s ~ )  of  C1, we have a combinat ion of  s~ is × sl , which remains 
effective in the cycle index of  H. Since the coefficient of  the term s z in CI($[21; s) 
is equal to 1/(122!) and that of  the term s~ s in CI($t181; s) is calculated to be 

*The original proof of this theorem [21] is based on the Read-Redfield superposition theorem. However, 
the elementary superposition theorem can be proved directly, appendix A of ref. [18]. Thereby, it is 
conversely used to give an alternative proof of the Read-Redfield superposition theorem [17]. 
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1/(11818!) by means  o f  eq. (56), the product  o f  them is the coeff ic ient  o f  the s 2° 
term in the cycle index of  H. Hence,  theorem 6 affords 

1 1 = ~ x ~ x 12°20! = 190, 
l - Z !  1"-1~I  

(a) (b) (c) 

where the top term in braces represents such an effective combination. For memorizing 
this procedure,  note that the part marked with (a) corresponds to the term s 2 o f  

18, 18 18. s 2 x s  1 , the part (b) to s 1 o f  s 2 x s  1 , and part (c) to the SCI (s 2° = s? x s~8). Along 
the same line, we have the fol lowing results: 

1 1 
{s 2 x s9} 'Poc2  = 111! x ~ x21°10! = 10, 

6 6  2 4 7  
{s 2 x s  l s2 ,s  1 x s  Is 2} 'poc .  = X 166!226! + ]--~[ X 144.~77! 

× 166! X 277! = 22, 

1 1 
{s 2 x s 6 } ' P o c ,  = 1 ~ .  x ~ x 122! x 366! = 1, 

{none} " Pos4 = O, 

52 1 1 
{S 2 X $2S4} " P0C2,, = ~ X 255[412! X 266! X 422! = 6, 

{none} "POD2 = O, 

{none} " Poc5 = O, 

1 
(s? x s4s61, poc, ,  = x - -  

344! 611! 
× 122! X 344[ X 611! = 1, 

22  1 X 1 
{S 2 X $3S6} " POC3 b = 211! 312! 622! 

- -  x 211l x 322! x 622! = 1, 

1 1 
{s 2 xs~}" POD~ = ~ X ~ X 2'1! X 633! = 1, 

{none} : POD2, = O. 

(none} "pOD5 = O. 

(none) " POT = O. 
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1 1 
{s 2 x s~}" POD,,, = ~ X ~ X 2'1! X 633! = 1, 

{none} " POD,,~ = O, 

{none} : PoT, = O, 

{none} : Poi = O, 

{none} : Pos~,3 = O. 

These values are collected to form a row vector: 

FPV = (190, 10, 22, 1, 0, 6, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0). 

This FPV is identical to the x 2 (or x 18) row of table 3. Obviously, the multiplication 
of the FPV by the inverse (table 2) affords the same row vector as shown in the 
x 2 (or x 18) row of table 4. 

By applying the * operation to the PCI (eq. (7)) and subsequently by using 
theorem 6, we arrive at the following theorem. 

THEOREM 7 (Theorem 18.3 of ref. [17]). (Partial superposition) 

The number (Aol) of functions with the Wo weight and the S! nl automorphism 
group is represented by 

Aoi = CI(H; s) * PCI(SI"I; sat ̀  ). (64) 

This theorem affords the Aoi value with a specific [0] and a specific S! nl 
without utilizing generating functions. 

For exemplifying the partial superposition, we re-examine the enumeration of 
digraphs with the Td automorphism group and 01 = 2 and 02= 18. Among the 
terms contained in the cycle index CI($EEI; s ) x  CI($[181; s), we take account 

6 7  6 3  2 4  2 2  3 2 of s is  2, SzS 4, s ls3s 6, s2s3s6, s2s 6, s4s~2, and s20 because the PCI for Cs (eq. (33)) 
contains these terms. As shown above, s6s72 are associated with effective combinations 

6 6  4 7  { s2xs~s  2, s~xs~s2} ,  and the other terms can also be related to such effective 
combinations. Theorem 7 is applied to this case to afford 

1(I ,  Aoc, = Z x , 1 ' 1  1 x + x x 166! x 277! 
166! 266! ~ 144~77! 

1 - - x 3 x  
6 

(12@ 1 X 266, X 422!) 
• x 255!422! 
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1-N., 1 _ 16 X 3 x 1 X 344!611! X 122! x 344! X 611! / 

- - 1 X  X 
6 322! 622! 

x 211 x 322! x 622!) 

+ . x ~ .  x211!x633! + 0 + 0  

= i x  ( 2 2 -  3 ×  6 - 3  x 1 - 1 + 6  + 0 +  0 ) =  1. 
6 

This value is equal to the one that appears in the intersection between the x 2 row 
and the Cs column of table 4. 

The relationship between the elementary superposition and the partial 
superposition is verified more clearly by the following expression: 

1 
Aoc ' = ~ x (Poc ,  - 3Poc2v - 3poc3v - P0C3h + 6P0D3h + 6poTd -- 6Pos  TM ) 

= l x ( 2 2 - 3 x 6 - 3 x l -  1 + 6 + 0 + 0 ) = 1 .  
6 

6. Conclusion 

Enumeration of digraphs with a given automorphism group is accomplished: 

(1) by using subduced cycle indices (SCIs), 
(2) by using partial cycle indices (PCIs), 

(3) by applying the elementary superposition to the SCIs, and 
(4) by applying the partial superpositions to the PCIs. 

The former two methods are based on generating functions and the latter two 
methods do not use such generating functions. All of these methods stem from the 
concept of unit subduced cycle indices (USCIs), which are derived from the subduction 
of coset representations. 

In the present paper, we have focused attention on S t5l. For further enumeration, 
we should precalculate the USCIs for the symmetric groups S tnJ (n > 6); this task 
will provide us with promising results. Since the USCIs are associated with the 
structure of a finite group, the enumeration of digraphs (and graphs) with a given 
automorphism group requires knowledge on such structure, especially on the group- 
subgroup relationship of the group. 

The methods of the USCI approach provide us with tools for itemized 
enumeration, which has not been accomplished by the P61ya-Redfield theorem or 
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by the Read-Redfield theorem. Moreover, it should be emphasized that the USCI 
concept is a key on a fundamental level to clarify the relationship between the two 
before-mentioned theorems. 

References 

[1] G. P61ya, Acta Math. 68(1937)145; 
G. P61ya and R.C. Read, Combinatorial Enumeration of Groups, Graphs, and Chemical Compounds 
(Springer, Berlin, 1987). 

[2] J.H. Redfield, Am. J. Math. 49(1927)433. 
[3] R.C. Read, J. London Math. Soc. 34(1959)417. 
[4] F. Harary, Graph Theory (Addison-Wesley, Reading, 1969). 
[5] F. Harary, Graph Theory and Theoretical Physics (Academic Press, London, 1967). 
[6] A.T. Balaban (ed.), Chemical Application of Graph Theory (Academic Press, London, 1976). 
[7] E. Ruch and D.J. Klein, Theor. Chim. Acta. 63(1983)447. 
[8] E. Ruch, W. H~selbarth and B. Richter, Theor. Chim. Acta 19(1970)288. 
[9] H.O. Foulkes, Can. J. Math. 15(1963)272. 
[10] J. Sheehan, Can. J. Math. 20(1968)1068. 
[11] J.H. Redfield, J. Graph Theory 8(1984)205; 

J.I. Hall, E.M. Palmer and R.W. Robinson, J. Graph Theory 8(1984)225. 
[12] W. Burnside, Theory of Groups of Finite Order, 2nd Ed. (Cambridge University Press, Cambridge, 

1911). 
[13] W. H~selbarth, Theor. Chim. Acta 67(1985)339. 
[14] J. Bmcas, J. Am. Chem. Soc. 108(1986)1135. 
[15] C.A. Mead, J. Am. Chem. Soc. 109(1987)2130. 
[16] S. Fujita, Theor. Chim. Acta 76(1989)247. 
[17] S. Fujita, Symmetry and Combinatorial Enumeration in Chemistry (Springer, Berlin, 1991). 
[18] S. Fujita, Theor. Chim. Acta 82(1992)473. 
[19] S. Fujita, L Math. Chem. 5(1990)99. 
[20] S. Fujita, Bull. Chem. Soe. Japan 62(1989)3771; 63(1990)203; 63(1990)1876; 63(1990)2033; 

63(1990)2759; Theor. Chim. Acta 77(1990)307; J. Math. Chem. 5(1990)121. 
[21] S. Fujita, Bull. Chem. Soc. Japan 63(1990)2770. 
[22] A. Kerber and K.-J. ThOling, in: Lecture Notes in Mathematics, Vol. 969 (Springer, Berlin, 1982) 

p. 191. 
[23] S. Fujita, Theor. Chlm. Acta 78(1990)45; J. Am. Chem. Soc. 112(1990)3390. 
[24] S. Fujita, Tetrahedron 46(1990)365. 


